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Abstract

The temperature and solute concentration reductions across a thin boundary layer near the free surface of an

evaporating droplet may induce cellular flow motion in the droplet because of Marangoni instability. The present study

is aimed at investigating theoretically the onset of Marangoni instability due to the evaporation of a two-component

evaporating droplet.

With the quasi-steady approximation which means that the surrounding gas motion is asymptotically steady, the size

change of the droplet is negligible, and the temperature and concentration distributions of the droplet are temporarily

frozen at each specified instant of interest, the onset condition for Marangoni instability is obtained through the linear

stability analysis.

By assuming the surface tension is a monotonically decreasing function of both temperature and concentration of

the higher-volatility substance, the thermocapillary and diffuso-capillary effects augment each other. Therefore, the

theoretical analysis predicts a linear relation, with a negative slope, between the onset thermal Marangoni number,MaT,
and the onset solute Marangoni number, MaS. Moreover, when liquid Lewis number Lel > 1, the critical wave number,

lc, may possess different values depending on the variation of the thermocapillary effect and diffuso-capillary effect. In

addition, Lel has a stronger effect on the critical solute Marangoni number MaS;C, than on the critical thermal Ma-

rangoni number MaT;C. That is, as Lel decreases, MaT;C decreases mildly while MaS;C increases drastically.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When there is a temperature or concentration gradient along the interface or free surface, flow in the liquid phase

will be generated immediately by the thermocapillary or diffuso-capillary effect. Such a flow motion is called thermo-

capillary flow or diffuso-capillary flow. If the temperature or concentration gradient is normal to the interface or free

surface, cellular flow motion will be generated only when the corresponding Marangoni number exceeds a certain

critical value. Such a flow phenomenon is called Marangoni instability.

The instability of a liquid layer heated from below was first studied by Pearson [23]. Since then, Marangoni in-

stability due solely to a temperature gradient [8,11–13,18,20,26,28,31–33] or concentration gradient [3,9,21,29] has been

extensively studied. Among them, Nield [20], Smith [28] and Davis [8] included also the buoyancy effect. Marangoni

instability with a deformable surface were investigated by Scriven and Sternling [26], Zeren and Reynolds [33], Wahal

and Bose [32], and Ha [11]. Recently, a few studies of a vaporizing droplet with surface tension effect have appeared
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[15,19,25]. Generally, linear stability analysis was applied mostly in the past. As an alternative approach, the energy

method was proposed and applied by Davis [8], Homsy [13], and Neitzel [18].

There are some physical systems, such as the evaporation of a liquid solution, that simultaneous thermal and

concentration gradients may exist in the liquid. If there is an interface, Marangoni instability may occur due to the

coupling effect of the non-uniform surface temperature and concentration distributions.

McTaggart [17] has studied the Marangoni instability of a liquid layer with both temperature and concentration

gradients in the absence of gravity. She found that the surface tension effects due to these two gradients were additive.

Nomenclature

A0 gas evaporating velocity at the droplet sur-

face

a activity of the volatile component

Bi heat exchange parameter

Cp heat capacity

Cr Crispation number

D mass diffusivity

Ev dimensionless evaporation rate

hlg latent heat of evaporation related to the

concentration gradient

k thermal conductivity

Le Lewis number

l wave number of the disturbances

Ma Marangoni number

Mamb molecular weight of air

Ml1 molecular weight of the volatile component

Ml2 molecular weight of the non-volatile com-

ponent

m azimuthal wave number

m0 dimensional evaporation rate

mv vapor mole fraction of the volatile compo-

nent

Pr Prandtl number

Pm
l associated Legendre polynomials

p pressure

Q dimensionless heat flux due to the evapora-

tion

R; h;/ dimensionless spherical coordinates

Re radial Reynolds number of the gas phase

flow

r; h;/ dimensional spherical coordinates

r0 radius of the evaporating droplet

rw1 ratio of molecular weights Mamb=Ml1

rw2 ratio of molecular weights Ml2=Ml1

_SS dimensionless regression rate of the evapo-

rating free surface

T temperature

t dimensional time

U magnitude of the perturbed R-component

velocity
~VV velocity vector

x surface liquid mole fraction of the volatile

component

Y mass fraction of the volatile component

Y m
l spherical harmonics

Y magnitude of mass fraction perturbation

Greek symbols

a thermal diffusivity

c ratio of the activity of the volatile compo-

nent to its surface mole fraction

f1 defined parameter indicating the mass

transfer due to temperature perturbations

f2 defined parameter indicating the mass

transfer due to concentration perturbations

l dynamic viscosity

m kinematic viscosity

q density

r surface tension

s dimensionless time

/k thermal conductivity ratio

/a thermal diffusivity ratio

/q density ratio

v1 defined parameter indicating the heat

transfer due to temperature perturbation

v2 defined parameter indicating the heat

transfer due to concentration perturbation

x complex quantity representing the time

varying behavior of disturbances

xi circular frequency of the disturbance

xr amplification factor of the disturbance

Miscellaneous symbols

ı imaginary unit

R universal gas constant

I magnitude of temperature perturbation

Superscripts
0 perturbed quantity

� dimensionless quantity

Subscripts

b boiling state

g gas phase

l liquid phase

v vapor (of the volatile component)

ref reference state

s surface condition

0 initial condition

1 far field
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Moreover, for the aqueous solution of MgSO4, there existed a case that oscillatory instability became the preferred

mode. Slavtchev et al. [27] investigated the stationary Marangoni instability in a liquid layer due to non-isothermal gas

absorption. Instability was found for various conditions.

Experiments on the Marangoni instability of three different aqueous solutions were studied by Chen [4]. Linear

stability analysis was applied by Chen and Su [5] to study a similar problem. The results showed that, with or without

buoyancy effect, the predicted stability boundaries were quite different. When the surface tension effect and the

buoyancy effect opposed each other, the oscillatory instability became the preferred mode. Moreover, a bimodal

marginal instability curves could be generated, which means that simultaneous occurrence of two instability modes with

different wave numbers were possible. Tanny et al. [30] modified the work of Chen and Su [5] to further study the effect

of nonlinear concentration distribution across the layer depth both experimentally and by linear stability analysis. The

theoretical results were in reasonable agreement with the experiments.

The above studies, however, have not actually considered the effects of phase change, surface regression, or transient

energy and species diffusion. Insulated and non-diffusive boundary conditions were usually applied at the free surface.

Actually, the continuity conditions of the heat flux, mass flux, velocity and stresses should be applied at the interface.

Recently, Aharon and Shaw [1,2] employed the linear stability analysis to study the onset conditions of stationary

Marangoni instability of an evaporating bi-component droplet with surface regression. Only quasi-steady species

profiles with spherical symmetry were considered in their study. In addition to the droplet, the surrounding gas phase

was also perturbed and coupled with the liquid phase. Critical radii for stability of two different liquid mixtures were

then determined. However, evaporation is an unsteady process involving simultaneous heat and mass transports. The

heat transfer rate of the droplet is mainly controlled by the mass flux at the free surface during evaporation. There exists

a strong coupling between the temperature and concentration fields. Therefore, the temperature variation of the droplet

during evaporation should not be ignored.

In order to complement the work by Aharon and Shaw [1,2] the coupling effects upon the onset of Marangoni

instability of an evaporating bi-component droplet due to simultaneous temperature and concentration variations are

investigated in the present study. Under the quasi-steady assumption, which will be discussed in next section, the onset

conditions of stationary Marangoni instability are obtained analytically by linear stability analysis. The relation be-

tween the onset thermal Marangoni number and the onset solute Marangoni number and the mechanism for the onset

of Marangoni instability are clearly and explicitly demonstrated.

2. Mathematical formulation

A motionless droplet of radius r0 surrounded by a passive gas with an initial mass fraction Y1 of the evaporating

component and at temperature T0 and pressure p1 is considered in this study. The droplet is originally at pressure p0
and the same initial temperature T0 as the surrounding gas. Y0 is the mass fraction of the volatile component of the

droplet. A schematic diagram of the physical model is depicted in Fig. 1.

2.1. Basic assumptions

2.1.1. Quasi-steady approximation

Strictly speaking, evaporation of a droplet is never a steady process since the radius of the droplet, the surface

temperature, and the evaporation rate keep decreasing during evaporation. At distances far from the droplet surface,

the unsteady effect in the gas phase might be important [6]. However, as shown in Table 1, the time scales of the gas

Fig. 1. The schematic diagram of the physical model and coordinate system.
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phase are two order smaller than that of the heat diffusion in the liquid phase. Moreover, the state of the evaporating

droplet is far below the critical state of phase change. Therefore, the gas phase (the surrounding air) can be treated as

asymptotically steady. On the other hand, the time scale for the interface regression is about one order larger than the

heat diffusion time scale of the liquid phase. The regression of the droplet surface is, therefore, negligible when con-

sideration is mainly on the droplet temperature evolution. Although the time scale of the surface regression is about the

same order as the time scale of species diffusion in the droplet, the surface regression is still neglected in the present

study. The reasons are as follows: (1) Since all the Marangoni instabilities occur at the very early stage during evap-

oration, the surface regression is extremely small and, therefore, can be neglected. (2) The unsteady term in species

diffusion equation is purposely included so that its effect on the Marangoni instability due to evaporation can be

studied; its inclusion does not improve the accuracy of the analysis. Therefore, the present study is limited to the in-

vestigation of how the Marangoni instability of an evaporating droplet, which is mainly driven by the thermocapillary

effect, is influenced or modified by the diffuso-capillary effect at the very early stage during evaporation when the surface

regression can be neglected.

Moreover, because the distributions of the temperature and species concentration of the liquid phase vary con-

tinuously during evaporation, it is difficult to deal with the onset of Marangoni instability by linear analysis. In order to

obtain basic ideas and sufficient conditions for the onset of instability, the temperature and concentration distributions

are temporarily ‘‘frozen’’ at each specified instant during the application of linear stability analysis [2,11,12].

The quasi-steady approximation used in the present study are summarized as follows:

1. The transport phenomena of the surrounding gas phase are treated as steady.

2. The regression of the interface during evaporation is negligibly small.

3. The temperature and species concentration distributions of the liquid phase are temporarily frozen during the linear

stability analysis.

2.1.2. General assumptions for simplification

In addition to the quasi-steady approximation discussed above, the following assumptions are made to further

simplify the analysis:

1. The instability of a binary droplet with one volatile component is considered.

2. The free surface is undeformable.

3. Both the liquid and gas phases are assumed incompressible.

4. The buoyancy effect is neglected under the microgravity condition.

5. All the physical properties of the fluid except the surface tension, which is a monotonically decreasing function of

both temperature and concentration of the volatile component, are considered constant.

6. The differential vapour recoil mechanism [22] is not considered at the droplet surface.

7. Viscous dissipation and radiative heat transfer are neglected.

8. Under the assumption of thermodynamic equilibrium at the droplet surface, the following vapor–liquid relation for

the volatile component of a binary droplet should be satisfied [24],

Table 1

Comparison of the various timescales during evaporation: al=ag � Oð10�2Þ, ql=qg � Oð103Þ, ll=lg � Oð102Þ, Prl � Oð101Þ, Prg � 1,

Lel � ð101 � 102Þ;Leg � ð10�1 � 1Þ, Re ¼ A0r0=mg ¼ radial Reynolds number � Oð10�1 � 1Þ, A0 ¼ ur;gjr¼r0
¼ � Dg

r0
ln

1�Yv;0ð1Þ
1�Yv;0ð1Þ=/q

¼ gas

evaporating velocity at the droplet surface

Process Timescale Timescale w.r.t. r20=al

Gas phase flow r0=A0
al

A0r0
¼ 1

RePrl
ll
lg

qg
ql
� ð10�2 � 10�1Þ

Transport in gas phase

(a) Diffusion of momentum r20=mg
al
mg
¼ al

ag
1
Prg

� 10�2

(b) Diffusion of heat r20=ag
al
ag
� 10�2

(c) Diffusion of mass r20=Dg
al
Dg

¼ al
ag
Leg � ð10�3 � 10�2Þ

Transport in liquid phase

(a) Diffusion of momentum r20=ml
al
ml
¼ 1

Prl
� 10�1

(b) Diffusion of heat r20=al 1

(c) Diffusion of mass r20=Dl
al
Dl
¼ Lel � ð101 � 102Þ

Droplet regression r0
_rr0
’ r0ql

A0qg

al
A0r0

ql
qg
¼ 1

RePrl
ll
lg
� ð101 � 102Þ
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Yvðr0Þ ¼
cF rw2Ylðr0Þ

1�Ylðr0Þþrw2Ylðr0Þ
exp

hlg
R

1
Tb
� 1

Ts

� �h i
rw1 � ðrw1 � 1ÞcF rw2Ylðr0Þ

1�Ylðr0Þþrw2Ylðr0Þ
exp

hlg
R

1
Tb
� 1

Ts

� �h i ; ð1Þ

where Yvðr0Þ and Ylðr0Þ are the vapor and liquid mass fraction of the volatile component at the free surface. Activity

coefficient c is defined as the ratio of the activity of the volatile component, a, to its surface mole fraction, x, i.e. c � a=x.
F is a correction factor and usually close to unity when the total pressure is not too high; here, its value is set to be unity.

hlg is the heat of evaporation, Tb is the boiling temperature of the volatile component, and R is the universal gas

constant. rw1 is the ratio of molecular weight of the non-volatile component (with subscript ‘‘2’’) to that of the volatile

one (with subscript ‘‘1’’), i.e., Ml2=Ml1. rw2 is the ratio of molecular weight of the ambient gas to that of the volatile

species, i.e., Mamb=Ml1.

2.2. The governing equations and basic solutions

For the convenience and generality of the analysis and discussion, the variables are non-dimensionalized. The

reference scales for length, time, velocity, temperature, pressure and mass fraction are r0, r20=al, al=r0, m0
0hlgr0=kl, qla

2
l =r

2
0,

and Y0, respectively. In which, al is the liquid thermal diffusivity, kl is the liquid thermal conductivity, ql is the liquid

density, and m0
0 ¼ qgður;gjr¼r0

� _rr0Þ is the evaporating rate of the volatile component at the initial temperature T0. By
defining the dimensionless temperature (subscript g and l refer to the gas phase and liquid phase, respectively)

T �
l ¼ Tl � T0

Tref
and T �

g ¼ Tg � T0
Tref

; ð2Þ

the dimensionless governing equations and initial and boundary conditions and the corresponding basic solutions are as

follows.

2.2.1. Gas phase (the surrounding atmosphere)

The evaporation will result in an outward flow motion away from the droplet surface in the gas phase. The gov-

erning equations for such a radial gas flow are as follows:

1

R2

o

oR
ðR2u�R;gÞ ¼ 0; ð3Þ

/a

Prg
u�R;g

ou�R;g
oR

�
þ /q

op�g
oR

�
¼ 1

R2

o

oR
R2

ou�R;g
oR

� �
�
2u�R;g
R2

; ð4Þ

/au
�
R;g

oT �
g

oR
¼ 1

R2

o

oR
R2

oT �
g

oR

� �
; ð5Þ

/aLegu
�
R;g

oY �
v

oR
¼ 1

R2

o

oR
R2 oY

�
v

oR

� �
: ð6Þ

The boundary conditions as R ! 1 are

~VV �
g ¼ 0; T �

g ¼ 0; ð7; 8Þ

p�g ¼ p�1; Y �
v ¼ Y �

1 ¼ 0: ð9; 10Þ

At the droplet surface R ¼ 1, one has

u�R;l � _SS ¼ 1

/q

ðu�R;g � _SSÞ ¼ Ev; ð11Þ

1

/aLeg

oY �
v

oR
¼ � 1

Y0

�
� Y �

v

�
ðu�R;g � _SSÞ: ð12Þ

In the above equations, u�R is the dimensionless R-component velocity; p� denotes the dimensionless pressure; Y �
l and Y �

v

are the dimensionless liquid and vapor mass fraction of the volatile component. The property ratios, /a ¼ al=ag and

/q ¼ ql=qg, are the thermal diffusivity and the density ratio, respectively. Prg ¼ mg=ag is the gas Prandtl number.

Leg ¼ ag=Dg denotes the gas Lewis number with Dg being the mass diffusivity. Ev ¼ m0r0=ðqlalÞ is a dimensionless
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evaporation rate. _SS is the dimensionless regression rate of the droplet and is evaluated only when mass balance is

considered. Nevertheless, the position change of the interface, i.e., the droplet regression, is to be neglected in the later

analysis under the quasi-steady approximation.

The basic solutions are

u�R;g ¼ � 1

/aLeg
ln
1� Yvð1Þ
1� Yvð1Þ

/q

� 1
R2

; ð13Þ

p�g ¼ � 1

2/2
a/qLe2g

ln2 1� Yvð1Þ
1� Yvð1Þ

/q

� 1
R4

þ p�1; ð14Þ

T �
g ¼ T �

s

1�Yvð1Þ
1�Yvð1Þ

/q

� �1=ðLeg �RÞ
� 1

1�Yvð1Þ
1�Yvð1Þ

/q

� �1=Leg
� 1

; ð15Þ

Y �
v ¼ Yvð1Þ

Y0

1�Yvð1Þ
1�Yv ð1Þ

/q

� �1=R
� 1

1�Yvð1Þ
1�Yvð1Þ

/q

� �
� 1

; ð16Þ

where

Yvð1Þ ¼
c rw2Ylð1Þ
1�Ylð1Þþrw2Ylð1Þ

exp
hlg
R

1
Tb
� 1

Ts

� �h i
rw1 � ðrw1 � 1Þc rw2Ylð1Þ

1�Ylð1Þþrw2Ylð1Þ
exp

hlg
R

1
Tb
� 1

Ts

� �h i ð17Þ

is the mass fraction of the vapor at the droplet surface.

The dimensionless evaporation rate is then determined by the continuity of mass flux at the free surface, i.e., Eq.

(11),

Ev ¼
u�R;gjR¼1

/q � 1
¼ RePrg

/að/q � 1Þ ¼ � 1

Leg/að/q � 1Þ ln
1� Yvð1Þ
1� Yvð1Þ

/q

; ð18Þ

where Re ¼ ur;gjr¼r0
r0=mg ¼ u�R;gal=mg is the radial Reynolds number of the gas phase flow (please referred to Table 1).

2.2.2. Liquid phase (the droplet)

Since the attention is focused on the evaporation of a quiescent droplet, no motion occurs in the liquid phase. The

pressure in the droplet is then constant and can be determined by the condition of normal-force balance on the surface,

�p�l �
�
� p�g þ

2Prg
/a/q

ou�R;g
oR

�
¼ �2

Prl
Cr

; ð19Þ

where Prl ¼ ml=al is the liquid Prandtl number and Cr ¼ llal=ðr0r0Þ is the Crispation number with r0 being the surface

tension at T0 and Y0. Then, with u�R;g and p�g solved, p�l is determined as follows:

p�l ¼
2Prl
Cr

� 4Prg
/2

a/qLeg
ln
1� Yvð1Þ
1� Yvð1Þ

/q

� 1

2/q/
2
aLe2g

ln2 1� Yvð1Þ
1� Yvð1Þ

/q

þ p�1: ð20Þ

The temperature field of the droplet, T �
l , and the distribution of the mass fraction of the volatile component, Y �

l ,

cannot be solved analytically. Numerical calculations have to be used to solve the following energy and diffusion

equations with the relevant conditions:

oT �
l

os
¼ 1

R2

o

oR
R2 oT

�
l

oR

� �
; ð21Þ

Lel
oY �

l

os
¼ 1

R2

o

oR
R2 oY

�
l

oR

� �
; ð22Þ
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s ¼ 0; T �
l ¼ 0; Y �

l ¼ 1; ð23; 24Þ

R ¼ 0; T �
l ; Y

�
l ¼ finite; ð25; 26Þ

R ¼ 1; � oT �
l

oR
¼ T �

s Biþ Q; ð27Þ

� 1

Lel

oY �
l

oR
¼ �Y �

l Evþ
Ev

Y0
: ð28Þ

In Eq. (27), the first term of the right-hand side represents the heat transfer to the ambient by convection, and the

second term denotes the heat flux due to evaporation at the free surface. Relevant parameters are

Bi ¼ 1

/kLeg
ln
1� Yvð1Þ
1� Yvð1Þ

/q

�

1�Yvð1Þ
1�Yvð1Þ

/q

� �1=Leg
ð1�Yvð1Þ
1�Yvð1Þ

/q

� �1=Leg
� 1

; ð29Þ

Q ¼ m0

m0
0

¼ qlalEv=r0
qlalEv0=r0

¼
ln 1�Yvð1Þ

1�Yvð1Þ
/q

ln
1�Yv;0ð1Þ

1�
Yv;0 ð1Þ

/q

; ð30Þ

where /k ¼ kl=kg is the thermal conductivity ratio.

The transient temperature and concentration distributions of the droplet are solved numerically by using the Crank–

Nicolson method, which is of second-order accuracy ½ðDsÞ2; ðDRÞ2�. To obtain a true transient solution, the quantities

Ds and DR have been chosen in such a way that the discrete solution must converge to a certain extent, say 10�6. The

computations are now performed by using a uniform grid of 1200 points and a time step of Ds ¼ 10�7, and are accurate

to fourteen decimal places using double-precision arithmetic on PC. Within the thermal boundary layer, approximate

40 grid points are used to calculate the temperature variation with time. With Eq. (17), all physical variables of the gas

phase, which are expressed in terms of T �
s and Yvð1Þ, can then be determined.

2.3. Stability analysis

2.3.1. Perturbed equations

To determine the onset of instability, situations with infinitesimal disturbances on the basic flow of the droplet are

considered. Since all the diffusion time scales of the gas phase are two order smaller than those of the liquid phase and

there is no instability mechanism other than the onset of Marangoni instability of the droplet, any disturbance in the gas

phase will be damped readily when consideration is mainly on the variation of the liquid phase. Therefore, the per-

turbation equations of the gas phase are neglected for simplification and its effect on the Marangoni instability of the

droplet is directly through the thermal and mass boundary conditions on the interface.

All the quantities ~VV �
l , T

�
l , p

�
l , Y

�
l are perturbed. In the following analysis, a superscript ‘‘0’’ will be used to denote the

perturbed quantities and the subscript l, used for the liquid phase previously, is neglected for simplification. After

removing the higher order terms and the products of perturbed quantities, the dimensionless equations of the perturbed

fields become as follows:

r � ~VV 0 ¼ 0; ð31Þ

r2

�
� 1

Prl

o

os

�
~VV 0 ¼ 1

Prl
rp0; ð32Þ

r2

�
� o

os

�
T 0 ¼ ~VV 0 � rT �; ð33Þ

r2

�
� Lel

o

os

�
Y 0 ¼ Lel~VV 0 � rY �: ð34Þ
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The corresponding boundary conditions are

at R ¼ 0,

~VV 0 ¼ finite; ð35Þ
T 0 ¼ finite; ð36Þ
Y 0 ¼ finite; ð37Þ

and at the interface (R ¼ 1),

u0R ¼ oEv

oT � T
0 þ oEv

oY � Y
0; ð38Þ

R
o

oR
u0h
R

� �
þ 1

R
ou0R
oh

¼ �MaT
R

oT 0

oh
�MaS

R
oY 0

oh
; ð39Þ

1

R sin h
ou0R
o/

þ R
o

oR

u0/
R

 !
¼ � MaT

R sin h
oT 0

o/
� MaS
R sin h

oY 0

o/
; ð40Þ

� oT 0

oR
¼ Bi
�

þ oBi
oT � T

� þ oQ
oT �

�
T 0 þ oBi

oY � T
�

�
þ oQ
oY �

�
Y 0; ð41Þ

� 1

Lel

oY 0

oR
¼ oEv

oT �

�
� Y � þ 1

Y0

�
T 0 � Ev

�
þ oEv

oY � Y
� � 1

Y0

oEv

oY �

�
Y 0: ð42Þ

The definitions of the thermal and solute Marangoni numbers are

MaT ¼ �ðor=oT Þm0hlgr20
llalkl

and MaS ¼
�ðor=oYlÞY0r0

llal

;

respectively.

By virtue of the continuity equation, the two tangential stress boundary conditions can be combined into a single

one:

o2

oR2
ðRu0RÞ �

ð2þ L2ÞðRu0RÞ
R2

¼ MaT
R

L2T 0 þMaS
R

L2Y 0; ð43Þ

where

L2 ¼ 1

sin h
o

oh
sin h

o

oh

� �
þ 1

sin2 h

o2

o/2
¼ R2r2 � o

oR
R2 o

oR

� �
ð44Þ

with r2 denoting the Laplace operator in the spherical coordinate, i.e.,

r2 ¼ 1

R2

o

oR
R2 o

oR

� �
þ 1

R2 sin h
o

oh
sin h

o

oh

� �
þ 1

R2 sin2 h

o2

o/2
:

By eliminating the pressure term in Eq. (32), the perturbed R-momentum equation in terms of u0R can be derived, i.e.,

r2 r2

�
� 1

Prl

o

os

�
ðRu0RÞ ¼ 0: ð45Þ

2.3.2. The method of normal mode

Motivated by the operator L2, the perturbed quantities are expressed in terms of spherical harmonics, i.e.,

Ru0R ¼ UðRÞY m
l ðh;/Þexs;

T 0 ¼ IðRÞY m
l ðh;/Þexs;

Y 0 ¼ YðRÞY m
l ðh;/Þexs;

ð46Þ

where l and m are integers which are used to distinguish the different modes of disturbances, and x represents their

time-dependent nature. The spherical harmonics Y m
l satisfies the following equation:

1

sin h
o

oh
sin h

o

oh

� ��
þ 1

sin2 h

o2

o/2

�
Y m
l ðh;/Þ ¼ �lðlþ 1ÞY m

l ðh;/Þ; ð47Þ

5150 V.-M. Ha, C.-L. Lai / International Journal of Heat and Mass Transfer 45 (2002) 5143–5158



wherein

Y m
l ðh;/Þ ¼ Pm

l ðcos hÞeım/; ð48Þ

and Pm
l ðcos hÞ are the associated Legendre polynomials.

Substitution of the solution forms given by Eq. (46) into Eqs. (33), (34), and (45) and boundary conditions (35)–(38)

and (41)–(43) gives

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2

�
d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2
� x
Prl

�
U ¼ 0; ð49Þ

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2
� x

�
I � U

R
oT �

oR
¼ 0; ð50Þ

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2
� Lelx

�
Y� Lel

U
R

oY �

oR
¼ 0; ð51Þ

at R ¼ 0,

U ¼ 0; ð52Þ

I ¼ finite; ð53Þ

Y ¼ finite; ð54Þ

at R ¼ 1,

U
R
¼ oEv

oT � I þ oEv

oY � Y; ð55Þ

d2U
dR2

� 2� lðlþ 1Þ
R2

U ¼ �MaTlðlþ 1Þ
R

I �MaSlðlþ 1Þ
R

Y; ð56Þ

� dI

dR
¼ Bi
�

þ oBi
oT � T

� þ oQ
oT �

�
I þ oBi

oY � T
�

�
þ oQ
oY �

�
Y ¼ v1I þ v2Y; ð57Þ

1

Lel

dY

dR
¼ oEv

oT � Y �
�

� 1

Y0

�
I þ Ev

�
þ oEv

oY � Y
� � oEv

oY �
1

Y0

�
Y ¼ f1I þ f2Y: ð58Þ

In the above expressions,

v1 ¼ Biþ oBi
oT � T

� þ oQ
oT � and v2 ¼

oBi
oY � T

� þ oQ
oY �

are parameters indicating the energy flux due to temperature and concentration fluctuations, respectively;

f1 ¼
oEv

oT � Y �
�

� 1

Y0

�
and f2 ¼ Ev

�
þ oEv

oY � Y
� � oEv

oY �
1

Y0

�

are parameters representing the mass flux due to temperature and concentration fluctuations, respectively.

The instability problem is then reduced to an eigenvalue problem consisting of Eqs. (49)–(51) with boundary

conditions (52)–(58), which gives, in a functional form,

f ðx; l;MaT;MaS; Prl; Lel;Bi;Ev;QÞ ¼ 0: ð59Þ

In general, the eigenvalue x is a complex quantity

x ¼ xr þ ıxi: ð60Þ

The real part xr denotes the degree of amplification or damping, whereas the imaginary part xi is the circular

frequency of the disturbance. The condition for stability is that xr is negative for any value of l and other parameters of

the system. Of particular interest is the neutral stability with

xrðl;MaT;MaS; Prl; Lel;Bi;Ev;QÞ ¼ 0: ð61Þ

This is the condition to be examined in Section 3 for an evaporating binary droplet.
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However, the imaginary part of x ðxiÞ will not vanish in general, even if the real part of x ðxrÞ does. If xr ¼ 0

implies that xi ¼ 0 for every l, it is recognized to have exchange of stabilities and stationary instability will occur.

Otherwise, oscillatory instability will occur for certain wave numbers of disturbances. In the present study, only the

stationary instability is considered and investigated.

3. Stationary instability

3.1. Criterion for instability

For the onset of stationary instability, i.e. x ¼ 0, the eigenvalue problem, Eqs. (49)–(51), is simplified to

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2

�2
U ¼ 0; ð62Þ

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2

�
I � U

R
oT �

oR
¼ 0; ð63Þ

d2

dR2

�
þ 2

R
d

dR
� lðlþ 1Þ

R2

�
Y� Lel

U
R

oY �

oR
¼ 0 ð64Þ

together with boundary conditions (52)–(58). The solution of Eq. (62), with boundary condition (52), is

UðRÞ ¼ AðRl � aRlþ2Þ: ð65Þ

The constant A is arbitrary, depending on the amplitude of the initial disturbances, but it drops out in later analysis [9].

a is a constant to be determined from the condition of continuity of mass flux at the free surface, i.e., Eq. (55).

With the above velocity distribution, the solutions of Eqs. (63) and (64) subject to conditions (57) and (58) are

IðRÞ ¼ BRl � A
R�ðlþ1Þ

2lþ 1

Z R

0

ðs2lþ1 � as2lþ3Þ oT
�

os
dsþ A

Rl

2lþ 1

Z R

0

ð1� as2Þ oT
�

os
ds; ð66Þ

YðRÞ ¼ CRl � ALel
R�ðlþ1Þ

2lþ 1

Z R

0

ðs2lþ1 � as2lþ3Þ oY
�

os
dsþ ALel

Rl

2lþ 1

Z R

0

ð1� as2Þ oY
�

os
ds; ð67Þ

where

B ¼ Ab�1

2lþ 1
I1 ðv1

��
� l� 1Þ f2

�
� l
Lel

�
� f1v2

�
� I2b� I3v2ð2lþ 1Þ


; ð68Þ

C ¼ Ab�1

2lþ 1
I1f1ð2l
�

þ 1Þ þ I3Lel ðv1

�
þ lÞ f2

�
þ l
Lel

þ 1

Lel

�
� f1v2

�
� I4Lelb


; ð69Þ

b ¼ ðv1

�
þ lÞ f2

�
� l
Lel

�
� f1v2

�
; ð70Þ

I1 ¼
Z 1

0

ðR2lþ1 � aR2lþ3Þ oT
�

oR
dR; ð71Þ

I2 ¼
Z 1

0

ð1� aR2Þ oT
�

oR
dR; ð72Þ

I3 ¼
Z 1

0

ðR2lþ1 � aR2lþ3Þ oY
�

oR
dR; ð73Þ

I4 ¼
Z 1

0

ð1� aR2Þ oY
�

oR
dR: ð74Þ
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By condition (55), the constant a can now be determined as

a ¼
bþ oEv

oT � f2 � l
Lel

� �
� oEv

oY � f1
h i R 1

0
R2lþ1 oT �

oR dRþ oEv
oT � v2 � oEv

oY � ðv1 þ lÞ
� � R 1

0
R2lþ1 oY �

oR dR

bþ oEv
oT � ðf2 � l

Lel
Þ � oEv

oY � f1
h i R 1

0
R2lþ3 oT �

oR dRþ oEv
oT � v2 � oEv

oY � ðv1 þ lÞ
� � R 1

0
R2lþ3 oY �

oR dR
: ð75Þ

With the perturbed velocity, temperature and concentration fields solved as in Eqs. (65)–(67), the stability curves in

ðMaT;MaSÞ-plane are then determined by the following relation, which is derived from Eq. (56), i.e.,

MaT f2

��
� l
Lel

�
I1 þ v2I3

�
�MaS½f1I1 þ ðv1 þ lÞI3� ¼ � ðv1

�
þ lÞ f2

�
� l
Lel

�
� f1v2

�
2 aðl2 þ 2lÞ � l2 þ 1½ �

lðlþ 1Þ : ð76Þ

Thus, the stability curves in the (MaT;MaS)-plane are straight lines.

3.2. Results and discussion

Numerical calculations have been performed on Eq. (76) for a binary droplet, 20% heptane and 80% hexadecane

(percentage is by mass), evaporating in dry air at various initial temperatures. With a much higher boiling point, the

volatility of hexadecane is negligible compared to heptane. All calculations assume that the ambient pressure is 1 atm

and the specified time instants are chosen that the quasi-steady assumptions are not violated. The stability calculations

require the determination of properties of the droplet and surrounding air. Thermodynamic and transport properties of

a heptane–hexadecane droplet are referred to the references [7,24]. To accommodate the variation of gas phase

properties, a simple 1=3 rule [14] is used to evaluate the reference temperature and the reference mole fraction of the

evaporating component, i.e.,

Tr ¼ Ts þ
1

3
ðT1 � TsÞ; ð77Þ

mv;ref ¼ mvjR¼1 þ
1

3
ðmv;1 � mvjR¼1Þ: ð78Þ

Moreover, the Mason and Monchick mixture rule [16] is used for the evaluation of the mixture viscosity and the

Wilke rule [10] for the mixture thermal conductivity. The thermodynamic properties and molecular weight are calcu-

lated by assuming an ideal gas mixture.

Because the linear relationship between MaT and MaS, the stability curves, as determined by Eq. (76) for each

specified wave number l, in the (MaT;MaS)-plane are straight lines and are shown in Figs. 2 and 3 for a heptane–

hexadecane droplet with various initial temperatures and at two specific time instants, i.e., s ¼ 0:0001 and s ¼ 0:001.
For each stability line, the region below which and bounded by the coordinates is a stable one and the one above which

is an unstable region, with respect to the corresponding wave number. The boundary adjacent to the stable region is

defined as the stability boundary. The corresponding MaT, MaS and l on the stability boundary are defined as critical

thermal Marangoni number, critical solute Marangoni number, and critical wave numbers and are indicated by MaT;C,
MaS;C, and lc. The numerically calculated values are tabulated in Tables 2 and 3.

Fig. 2. Stability lines in (MaT, MaS)-plane for a heptane–hexadecane droplet with various initial temperatures (Y0 ¼ 0:2, s ¼ 0:0001);
each stability line corresponds to a specific wave number: (a) T0 ¼ 293 K (critical wave number, lc ¼ 6 � 10); (b) T0 ¼ 303 K (critical

wave number, lc ¼ 8 � 14); (c) T0 ¼ 313 K (critical wave number, lc ¼ 9 � 17).
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Several very interesting and important aspects can be learned from Figs. 2 and 3. They are: (1) Since, for a heptane–

hexadecane droplet, the thermocapillary effect and diffuso-capillary effect augment each other, the stability lines possess

negative slopes which means, with a stronger diffuso-capillary effect, the critical thermal Marangoni number, MaT;C
becomes smaller and vice versa. (2) When the diffuso-capillary effect is negligibly small, i.e. MaS � 0, MaT;C increases

with the initial temperature of the droplet and decrease as time proceeds, which are consistent with the results obtained

by Ha [11] and Ha and Lai [12]. The explanation for this phenomenon as given by the authors is repeated as follows.

There are two competing mechanisms determining the onset of instability. As stated previously the temperature re-

duction near the free surface is the driving potential for the Marangoni instability. Therefore, with a higher initial

temperature which results in a larger temperature reduction near the free surface, the droplet on one hand should

become more unstable. However, the heat transfer to the surrounding gas due to evaporation, which increases with

initial temperature, possesses the tendency to smooth the surface temperature disturbances. Therefore, the droplet, on

the other hand, becomes more stable with a higher initial temperature. The competition between these two mechanisms

will finally determine the effect of the initial temperature on the droplet instability. (3) When the thermocapillary effect is

Table 2

Numerically calculated values of MaT;C, MaS;C and lc for a heptane–hexadecane droplet at different initial temperatures with Y0 ¼ 0:2

and s ¼ 0:0001

T0 MaT;C MaS;C lc

293 2:97� 104–1:67� 104 0–6:19� 103 6

293 1:67� 104–6:86� 103 6:19� 103–1:09� 104 7

293 6:86� 103–2:99� 103 1:09� 104–1:27� 104 8

293 2:99� 103–9:05� 102 1:27� 104–1:36� 104 9

293 9:05� 102–0 1:36� 104–1:40� 104 10

303 3:33� 104–1:80� 104 0–4:48� 103 8

303 1:80� 104–1:03� 104 4:48� 103–6:70� 103 9

303 1:03� 104–6:17� 103 6:70� 103–7:86� 103 10

303 6:17� 103–3:61� 103 7:86� 103–8:58� 103 11

303 3:61� 103–1:82� 103 8:58� 103–9:08� 103 12

303 1:82� 103–4:99� 102 9:08� 103–9:43� 103 13

303 4:99� 102–0 9:43� 103–9:57� 103 14

313 3:77� 104–3:42� 104 0–6:45� 102 9

313 3:42� 104–2:02� 104 6:45� 102–3:24� 103 10

313 2:02� 104–1:31� 104 3:24� 103–4:54� 103 11

313 1:31� 104–8:82� 103 4:54� 103–5:32� 103 12

313 8:82� 103–5:90� 103 5:32� 103–5:85� 103 13

313 5:90� 103–3:76� 103 5:85� 103–6:22� 103 14

313 3:76� 103–2:11� 103 6:22� 103–6:51� 103 15

313 2:11� 103–7:85� 102 6:51� 103–6:73� 103 16

313 7:85� 102–0 6:73� 103–6:86� 103 17

Fig. 3. Stability lines in (MaT, MaS)-plane for a heptane–hexadecane droplet with various initial temperatures (Y0 ¼ 0:2, s ¼ 0:001);
each stability line corresponds to a specific wave number: (a) T0 ¼ 293 K (critical wave number, lc ¼ 3 � 6); (b) T0 ¼ 303 K (critical

wave number, lc ¼ 4 � 8); (c) T0 ¼ 313 K (critical wave number, lc ¼ 6 � 9).
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negligible, i.e., MaT � 0, MaS;C decreases as the initial temperature of the droplet increases and as time proceeds. This is

because the concentration reduction of heptane near the free surface becomes larger when the droplet possesses a higher

initial temperature or as time proceeds. Since MaT � 0, i.e., the thermocapillary effect is not important, the smoothing

effect of evaporation as discussed in item (2) will not effectively delay the occurrence of Marangoni instability. (4) All

the stability boundaries are composed of stability lines with different critical wave numbers. The critical wave number,

lc, possesses a larger value when the diffuso-capillary effect is dominant, i.e., at larger MaS;C and smaller MaT;C. When

the thermocapillary effect is the dominant one, i.e., at larger MaT;C and smaller MaS;C, lc has a smaller value. The

permissible values of lc on the stability boundary for different ranges of (MaT;MaS) can be readily found from Tables 2

and 3. Fig. 4, as an example, gives a close look of the stability boundary for T0 ¼ 313 K and s ¼ 0:001. The reason is as

follows. Since the Lewis number of a heptane–hexadecane mixture is about 50–80 depending on the initial temperature

of the droplet, the solute boundary layer is smaller than the thermal boundary layer near the free surface. Therefore,

when the diffuso-capillary effect is dominant, the disturbances for the onset of instability should possess a smaller

wavelength or a larger wave number in proportion to, in a certain sense, the solute boundary layer thickness near the

free surface. With the same reasoning, when the thermocapillary effect is dominant, lc should have a smaller value.

Moreover, since both the thermal and solute boundary layer thicknesses increase as time proceeds, lc has smaller values

for s ¼ 0:001 than for s ¼ 0:0001.
In order to demonstrate the Lewis-number effect on the onset of Marangoni instability, calculations with Lel ¼ 10, 1,

and 0.1, which are mathematically interesting only, and the one for a heptane–hexadecane droplet, are intentionally

shown in Fig. 5 for T0 ¼ 293 K and s ¼ 0:0001. The numerically calculated values of MaT;C, MaS;C and lc are tabulated

Table 3

Numerically calculated values of MaT;C, MaS;C and lc for a heptane–hexadecane droplet at different initial temperatures with Y0 ¼ 0:2

and s ¼ 0:001

T0 MaT;C MaS;C lc

293 4:41� 103–4:30� 103 0–4:0� 101 3

293 4:30� 103–7:77� 102 4:0� 101–1:28� 103 4

293 7:77� 102–1:19� 102 1:28� 103–1:50� 103 5

293 1:19� 102–0 1:50� 103–1:54� 103 6

303 5:66� 103–5:19� 103 0–9:1� 101 4

303 5:19� 103–1:56� 103 9:1� 101–7:90� 102 5

303 1:56� 103–5:90� 102 7:90� 102–9:69� 102 6

303 5:90� 102–1:05� 102 9:69� 102–1:06� 103 7

303 1:05� 102–0 1:06� 103–1:07� 103 8

313 7:63� 103–2:77� 103 0–5:13� 102 6

313 2:77� 103–1:25� 103 5:13� 102–6:68� 102 7

313 1:25� 103–4:84� 102 6:68� 102–7:43� 102 8

313 4:84� 102–0 7:43� 102–7:88� 102 9

Fig. 4. Stability boundary in (MaT;MaS)-plane for a heptane–hexadecane droplet at T0 ¼ 313 K, Y0 ¼ 0:2, and s ¼ 0:001 with

Lel ¼ 52:9; constructed by stability lines with different wave number.
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in Table 4. Similar results are also obtained for T0 ¼ 303 and 313 K at s ¼ 0:001. The basic phenomena illustrated in the

previous paragraph are observed for all the Lewis numbers calculated.

Studying the figures carefully, it can be found that, since the solute boundary layer thickness becomes larger as Lel
decreases, lc becomes smaller correspondingly. Moreover, since the solute boundary layer thickness becomes com-

patible with the thermal boundary layer thickness as Lel approaches to unity, lc tends to possess a single value. As a

result, when Lel 6 1, lc ¼ 1 always. The permissible values of lc on the stability boundary for different ranges of

(MaT;MaS) can be readily found from Table 4. In addition, Lel has a stronger effect on MaS;C than on MaT;C. From Fig.

5, it can be seen that when the thermocapillary effect is dominant or MaS is very small, with the aid of diffuso-capillary

effect,MaT;C tends to decrease as Lel decreases. While, when the diffuso-capillary effect is dominant or MaT is very small,

MaS;C tends to increase drastically as Lel decreases because of the much stronger Lel-effect on solute diffusion, as il-

lustrated by Fig. 6. The variation of MaT;C with Lel is much milder than that of MaS;C.

Table 4

Numerically calculated values of MaT;C, MaS;C and lc for evaporating binary droplets at different Lewis numbers with T0 ¼ 293 K,

Y0 ¼ 0:2 and s ¼ 0:0001

Lel MaT;C MaS;C lc

76.5 2:97� 104–1:67� 104 0–6:19� 103 6

76.5 1:67� 104–6:86� 103 6:19� 103–1:09� 104 7

76.5 6:86� 103–2:99� 103 1:09� 104–1:27� 104 8

76.5 2:99� 103–9:05� 102 1:27� 104–1:36� 104 9

76.5 9:05� 102–0 1:36� 104–1:40� 104 10

10 2:27� 104–1:22� 104 0–4:16� 104 1

10 1:22� 104–0 4:16� 104–9:44� 104 2

1 1:98� 104–0 0–8:47� 105 1

0.1 1:95� 104–0 0–9:15� 106 1

Fig. 5. Lewis number effect on stability lines in (MaT;MaS)-plane for evaporating binary droplets at T0 ¼ 293 K, Y0 ¼ 0:2, and

s ¼ 0:0001: (a) Lel ¼ 76:5 (heptane–hexadecane droplet; lc ¼ 6–10); (b) Lel ¼ 10 (lc ¼ 1–2); (c) Lel ¼ 1 (lc ¼ 1); (d) Lel ¼ 0:1 (lc ¼ 1).
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4. Conclusions

The stationary instability of an evaporating binary droplet is investigated. With the quasi-steady approximation

which assumes the size change of the droplet is negligible, the surrounding gas motion is asymptotically steady, and the

temperature and concentration distribution of the droplet is temporarily frozen at each specified instant, the onset

condition for stationary Marangoni instability is obtained through linear stability analysis.

By assuming the surface tension is a monotonically decreasing function of both temperature and solute concen-

tration, the thermocapillary and diffuso-capillary effects augment each other. Therefore, the theoretical analysis predicts

a linear relation, with a negative slope, between the onset thermal Marangoni number, MaT, and the onset solute

Marangoni number, MaS. Moreover, when Lel > 1 the critical wave number, lc, may possess different values depending

on the variation of thermocapillary effect and diffuso-capillary effect. In addition, as Lel decreases, the critical thermal

Marangoni number, MaT;C, decreases mildly while the critical solute Marangoni number, MaS;C, increases drastically.
Depending on the relation between the surface tension and temperature or concentration, and the effect on the

variations of the surface temperature and local boiling points due to changes in droplet surface composition, the ther-

mocapillary and diffuso-capillary effects may oppose each other [2]. When such a situation occurs, depending on the

relative importance between the thermocapillary and diffuso-capillary effects, the onset of Marangoni instability be-

comes much more complicated and different. As an example, the stability lines in Fig. 2 and 3 may possess positive

slopes. A detailed study of the Marangoni instability of an evaporating droplet when the thermocapillary and diffuso-

capillary effects oppose each other needs more effort and is now under investigation.
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